ĐĂNG NHẬP BẰNG MÃ QR Sử dụng ứng dụng NCT để quét mã QR Hướng dẫn quét mã
HOẶC Đăng nhập bằng mật khẩu
Vui lòng chọn “Xác nhận” trên ứng dụng NCT của bạn để hoàn thành việc đăng nhập
  • 1. Mở ứng dụng NCT
  • 2. Đăng nhập tài khoản NCT
  • 3. Chọn biểu tượng mã QR ở phía trên góc phải
  • 4. Tiến hành quét mã QR
Tiếp tục đăng nhập bằng mã QR
*Bạn đang ở web phiên bản desktop. Quay lại phiên bản dành cho mobilex

Circles

-

Đang Cập Nhật

Sorry, this content is currently not available in your country due to its copyright restriction.
You can choose other content. Thanks for your understanding.
Vui lòng đăng nhập trước khi thêm vào playlist!
Thêm bài hát vào playlist thành công

Thêm bài hát này vào danh sách Playlist

Bài hát circles do ca sĩ thuộc thể loại Au My Khac. Tìm loi bai hat circles - ngay trên Nhaccuatui. Nghe bài hát Circles chất lượng cao 320 kbps lossless miễn phí.
Ca khúc Circles do ca sĩ Đang Cập Nhật thể hiện, thuộc thể loại Âu Mỹ khác. Các bạn có thể nghe, download (tải nhạc) bài hát circles mp3, playlist/album, MV/Video circles miễn phí tại NhacCuaTui.com.

Lời bài hát: Circles

Lời đăng bởi: 86_15635588878_1671185229650

This geometric figure never stops going round
All points are equidistant from the center to the ground
We recognize the shape,
that of a circle Has properties throughout,
those universal
The distance from the center to a point on the end
Is called a radius, doesn't change, doesn't bend
A straight line with two endpoints that lie on a circle
Is referred to as a chord, diameter is its focal
X squared plus Y squared equals R squared
Property in the circles, now you're prepared
X squared plus Y squared equals R squared Property in the circles,
now you need to be
scared A tangent is a line that touches,
doesn't
pass Through the circle at one point, only has
a single debut If the radius hits a tangent at its point
of contact They form a right angle,
perpendicular artifice
Secant is a line that passes through
two points It differs from a chord,
no terminating joints
An angle formed at center,
but too radii It's called a central angle,
the arc identifies
X squared plus Y squared equals R squared Property in the circles,
now you're prepared
X squared plus Y squared equals R squared Property in the circles,
now you need to be scared
The measure is congruent,
relationship direct A sector is the area,
contained in intercept
A segment of a circle is the region bounded by A chord,
in its arc,
surrounded,
comply
If an arc gets bigger than 180 degrees,
it's major The smaller ones are minor in this nomenclature
A semicircle is half,
not major nor minor It measures 180,
vertexes,
flat liner
X squared plus Y squared equals R squared Property in the circles,
now you're prepared
X squared plus Y squared equals R squared Property in the circles,
now you need to be scared
Two chords share an end point on the edge of a
shape The angle is inscribed at a 2 to 1 rate
The arc is twice as large,
do the angle correspond?
The vertex have to measure to the arc that's beyond
If a central angle intercepts an arc
of equal length To that of the radius,
it's when radian not degrees
Radians are important in trigonometry Two pi radians 360 degrees
X squared plus Y squared equals R squared Property in the circles,
now you're prepared
X squared plus Y squared equals R squared Property in the circles,
no need to be scared
X squared plus Y squared equals R squared Property in the circles,
now you're prepared
X squared plus Y squared equals R squared Property in the circles,
no need to be scared
Circles, circles,
like a bird up in the sky Round in circles,
circles,
like a bird up in the sky
Round in circles, circles,
like a bird up in the sky
Round in circles, circles,
like a bird up in the sky

Đang tải...
Đang tải...
Đang tải...
Đang tải...